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Wigner’s phase space function and atomic structure

I. The hydrogen atom ground state
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We have constructed the Wigner function for the ground state of the
hydrogen atom and analysed its variation over phase space. By means of
the Weyl correspondence between operators and phase space functions we
have then studied the description of angular momentum and resolved a
dilemma in the comparison with early quantum mechanics. Finally we have
discussed the introduction of local energy densities in coordinate space and
demonstrated the validity of a local virial theorem.

1. INTRODUCTION

This is the first of a series of papers devoted to the phase space description
of atomic and molecular systems. Phase space representations of quantum
mechanics have been extensively discussed since the classical works by Weyl
[1], Wigner [2], Groenewold [3] and Moyal [4]. They have been applied in
quantum statistical studies of transport processes and radiation (see, for example,
[5] and [6]), and in treatments of molecular and nuclear dynamics (for example,
[7-10]). They have, however, not yet been used in such detailed theories as
the theories of atomic and molecular electronic structure.

In this and forthcoming papers we shall investigate the possibility of ex-
tending the application of phase space representations to such theories as well.
Very accurate wavefunctions are now available for all atoms and for a large class
of molecules. These wavefunctions have always been generated in coordinate
space, but there has been a considerable interest in their momentum space
representatives as well. The use of phase space representations allows one to
include the coordinate and momentum characteristics in a single picture, and
hence it may serve to improve our understanding of the dynamical behaviour
of electrons in atoms and molecules.

The phase space formulation of quantum mechanics treats states and
transitions in an equivalent manner. Thus, there is a phase space function
associated with every quantum state and with every quantum transition as well.
This function is the Wigner function.

In the present paper we shall only consider Wigner functlons associated
with states. Operationally, such functions play the réle of probability densities
in phase space. The values of the functions are, however, not restricted to being
Positive or zero, although they are always real. Hence, one may not interpret
the functions as probability densities. Such an interpretation would of course
also be inconsistent with the uncertainty principle.
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1002 J. P. Dahl and M. Springborg

If a Wigner function cannot be interpreted as a probability density, how
may it then be interpreted ? This question, which has attracted considerable
attention, was discussed in a recent article by one of the authors [11]. The
conclusion is that one must reconsider the réle played by a point in phase space.
The significance of such a point is not, as in classical mechanics, that it defineg
a simultaneous position and momentum of a particle. It is instead that it
defines an inversion operator, the so-called Wigner operator [12, 13].

The properties of the Wigner operator and the group theoretical basis j
lends to the phase space representation of quantum mechanics has been
thoroughly discussed by one of us [14], but since only one-dimensional motiog
was considered we shall here list a few of the relevant expressions for a particle
in three dimensions.

The inversion operator defined by the phase space point (r, p) is
f(r, p)=(~ ) ff dud d
(r, p)= 7 u dv exp £(r.u+p.v)

xexp[—%(?.u+ﬁ.v):| (1)

with the caret () denoting operators. The Wigner function associated with a
normalized state vector | is

i, e= () <11 w1, @)
It is normalized such that
§§ f(r, p)drdp=1. 3)

If ¢(r) and ¢(p) are the coordinate and momentum wavefunctions, respectively,
that is

P(r)=<rl4), )
$(p)=<p|¥>, (5)
then we may also write
2\ , , , 2
i, e)=(7)' 5 @ bt —ry%ate v exp (-Fe- ‘) ©)
and
2\3 2
i 0)=(7) 5 db' 6o %600+ ) cxp (% v) o
Further we have the relations
§ dp f(r, p)=4(r)*y(r), (8)
§ drf(r, p)=4(p)*$(p), 9)
and
gy = | § de dp (s, p)ar, p), (10)

where a(r, p) is the Weyl transform [1] of the operator 4, as discussed in the
Appendix.
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It is the relations (3) and (8)—(10) that show how the Wigner function plays
the rdle of a probability density in an operational sense. Let us also note that
the eigenvalues of [1(r, p) must be + 1, since it is an inversion operator. Hence
[13] we get that

o o< ;) (1)

and consequently that f(r, p) must have support in a volume not smaller than
h[2)3.
( \)Vith the value of f at the point (r, p) being equal to 2/k times the overlap
between 1) and its mirror image with respect to (r, p), we may say that f(r, p)
is a measure of the way the point (r, p) supports the given quantum state.
Similarly, we may talk about the way a certain region or a certain trajectory in
phase space supports a state. A proper use of this kind of language leads to an
integrated description of the wave and particle characteristics of quantum states.
It is the purpose of the present paper to show how this kind of description
works for the ground state of the hydrogen atom.

2. THE WIGNER FUNCTION FOR ls ORBITALS

In what follows we shall use atomic units, and hence put m, e and # equal to
one, m being the electron’s mass and —e its charge. We shall consider nuclear
masses as infinite and exclude spin and relativistic effects. The hamiltonian
for a hydrogen-like atom with nuclear charge Z is then

ﬁ2 Z
H==——.
2 7 (12)
The coordinate wavefunction for the ground state has the well known form
Z3\1/2
bt =(Z) " exp (= 20 (13)
and the corresponding momentum wavefunction is [15]
24/2 1
= VAL :
¢1s(p) T (P2+ Z2)2 (14)

Thus we obtain the following equivalent expressions for the Wigner function
by using equations (6) and (7)

3
fas(r, p)———% §deexp(—Zjr—r'|)exp(—Z|r+r'|)exp(—2ip.r) (15)

and
he(r, P) %Z; § dp’ [(p—p')2+ 22 2((p+ p') + 222 exp (2ir . p').  (16)

Neither of the integrals involved can be evaluated in a closed analytical form
and the Wigner function is consequently not expressible in terms of standard
functions. This is in accordance with the fact that it satisfies a differential
quation of infinitely high order [16], while the usual standard functions satisfy
differential equations of the first or second order.
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The integrals (15) and (16) are, however, not newcomers in the theory of
electronic structures. The integral (15) is, for a fixed value of r, the Fourier
transform of the product of two 1s orbitals centred around the points —r and r
respectively. Thus it is recognized as a generalized scattering factor in the theory
of X-ray diffraction of molecular crystals and as a standard integral in those
band theories of solids that are based on Fourier transform methods. Several
procedures have, accordingly, been devised for the evaluation of this integral
by methods of approximation.

Thus, McWeeny [17] and Silverstone [18] have studied methods in which
one orbital is expanded in an infinite series about the origin of the other. Such
methods are only rapidly convergent for small values of r, and hence they are
not applicable in the present context where all values of r must be considered.
Other methods implying the summation of an infinite series or the numerical
evaluation of an integral have been suggested by several authors ([19-21] and
references therein). Although very powerful for single values of r where the
accuracy can be readily assessed, these methods are again not easily applied when
r is allowed to vary freely.

The natural procedure to follow in the present context is to approximate
the function (13) by a finite series of gaussians and insert this series in (15).
The resulting integrals can then be evaluated analytically. This method is
capable of giving a good representation of the Wigner function for all values of
r and p, and it can easily be extended to other orbitals than the 1s orbital.
Generalized scattering factors have been calculated along these lines by McWeeny
[22] and Stewart [23].

We write accordingly

M
Py P(r) =Y, ¢ X(r) (17)
i=1
with X,(r) being a normalized gaussian
20, \3/4
Xi(r):<—l> exp (—ar?). (18)
- .

This gives
M M
f1s90(x, p) = Z ¢ Py(r, p)+ 21 e APy, p)+Pj(r, p)} (19)

i=1 i>f=

where we have used the definition
1 .
Py, p)==5 § dr X(r—v)X(r+¥)exp(~2ip.r). - (20)
ko
A straightforward integration results in

1 C\3/ 2
P(r, p) == (———y—’?—~) exp (— y;;7%) exp <— P ) exp (2iryp . r) (21)

a; + oy o+ oy
in which
4o
r—— —"I 22
’)"L] L0y + C!j ( )
and
roy =0 (23)
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Hence we get that

x exp (— y,;7%) exp ( —

1 M P2 2 M vij 3/4
fls(M)(r’ p)= 3 i;: ¢;*exp (- 20,;7%) exp < —_O‘i) i 3 ,'>§;=1 “i6 (m)

2

2

) cos (27,p.r). (24)

In the following sections we shall study this expression for the hydrogen
atom, using an M =10 representation of the 1s orbital determined by Duijneveldt
[24]. This is the extremely good approximation to the true ls orbital, leading
for instance to an energy which only deviates 0-00015 per cent from the true
value. The parameters defining the expansion are reproduced in table 1.

Table 1. Gaussian approximation to the 1s hydrogen orbital [24].

7 aifay? ci
1 0-062157 0-107330
2 0-138046 0-339658
3 0-304802 0-352349
4 0-710716 0-213239
5 1-794924 0-090342
6 4-915078 0-030540
7 15-018344 0-008863
8 54-698039 0-002094
9 254017712 0-000372
10 1776-775559 0-000044

We shall also make certain comparisons with the variationally determined

M =1 representation of the hydrogen 1s orbital.
mation is obtained for a=8§/97 =0-282942 q,~2.

As 1s well known, this approxi-

3. A CHANGE OF VARIABLES

‘The Wigner function is a function in six-dimensional phase space. It is,
however, obvious from (24) that f,,(r, p) only depends upon the three quantities
1, p and u, with u being the angle between the vectors r and p. Let us therefore

define new phase space variables instead of

r= (xlv X3, xs)
and

P=(p1 Pa P3)

- (25)

(26)

by introducing three mutually orthogonal unit vectors [25]

B 1 rp
S sinu2\r p)

_ 1 r+p
e2——2005u/2 r p)

1

63—

Crpsinu

rxp=e; xe,

\

~

(27)




1006 J. P. Dahl and M. Springborg
These vectors define a right handed coordinate system .S in ordinary three-

space. The orientation of S with respect to a laboratory system .S, may be
specified by three Euler angles «, 8, v such that S is obtained from S, by

(1) a rotation about the third axis of S, through the angle «,
(2) a rotation about the new second axis through the angle 8,
(3) a rotation about the new third axis through the angle y.
The following relations are then valid : '

[ econpiin (55 rsnes (-3 |
xy=—r|cosacosfBsin|y—=|+sinacos|{y-—-=
2 2
x2=—r|:sinacosﬁsin (y— >—cos<xcos<y— )]
x3=rsinﬂsin<y—g)
2 B
. u . u\] )
p1=—p[cosacosﬁsm<y+§)+smacos(y+§)]

- 1 1 u u
pe= —p | sin « cos B sin 7’+§ —cos<xCOS<'y+§)J % (29)

. . u
ps=p sin B sin <y+§>

e

(28)

[\SHIRN
MR

J

and
dr dp=r?dr p? dp sin u du sin B dB d« dy. (30)

The quantities 7, p, #, o, B, y are our new phase space variables; r and p
range from 0 to o, # and § from 0 to =, « and y from 0 to 2=.

We shall refer to the plane defined by r and p as the dynamical plane. Its
normal, which is ez, has the spherical polar coordinates (B, «). The angle y
will be called the dynamical angle.

With these designations we may express the fact that f,, is independent of
a, B and y by saying, that all dynamical planes and all dynamical angles are
equivalent. By displaying the dependence on 7, p and u we obtain a complete
picture of the 1s-state in the phase space representation. Let us first consider
the picture obtained in the M =1 approximation.

4, THE SINGLE GAUSSIAN APPROXIMATION TO THE 1s STATE

This simple approximation corresponds to a coordinate wavefunction of the

form (18), that is

20|31
*//u‘”(r)=(;) exp (—ar?) (31)

with o =8/97=0-282942 g,~2. The corrésponding momentum wavefunction is

. /4 2
¢1s<1>(p)=(271a)3 exp (—;f—) (32)

and the Wigner
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7 three- and the Wigner function (24) becomes
may be 1 P2
¥ (1, )= exp (—2ar?) exp (——>- (33)
T 2(1
This function is not only independent of «, 8 and y. It is independent of u as
well. By integrating it over o, B, y, # and multiplying it with 7% p? we obtain
the function
16 P
Fy(r, p)=— r* p* exp (~2ar%) exp ( — L (34)
™ 20
which is normalized such that
[> eI o}
(28) § § Fi W, p)drdp=1. (35)
0 0
0.0 5 1.0 1.5 20 25 3.0 35 4.0
4.0 4.0 -
p/og‘h
3.5 3.5 x-’
3.0 3.0 o5
(29) g
2.5 2.5 o
2.0 2.0 R
' -
(30)
1.5 1.5
r and p S
ne. Its 1.0 1.0
angle y
.5 .5
ndent of
1gles are 0.0 o
:omplete 0.0 5 10 15 20 285 30 a5 a0
consider r/ag
Figure 1. Contour map of the function Fis((r, p). The function attains its maximum
value, 0-6893 271, at the point (7q, po) =(1:-3293 q,, 0-7523 a,~* #4). Starting from
the maximum, contours have been drawn at 0-6, 0-3, 0-1, 0-06, 0-03, 0-01, 0-006 # 1,
m of the The function F;;M(r, p) is displayed in figure 1 through a contour map.
As is evident from (34) it is everywhere non-negative. It has 2 maximum at
the point
31) 1
(7o, Po) = (——, \/(2(1)) =(1-3293 a,t, 0-7523 a,~1 A 36
lction is 0 0 '\/(2(1) ( 0 0 ) ( )
the maximum value being
(32) 16
FisM(rg, po) =-—=0-6893A71. (37)
me
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It is obvious that F;“)r, p) gives us complete information about the 1s

state in the single gaussian approximation. Thus, integration over p gives the
radial density in configuration space (with maximum at 7,) and integration over
r gives the radial density in momentum space (with maximum at py). Actually
F,® is nothing but the product of these two radial densities.
As far as the function f,,4)(r, p) itself is concerned, we note that it attains
§ its maximum at the origin (0, 0). The 1s state is symmetric with respect to
; inversion in this point, and the corresponding value of f,;,@) is accordingly the
largest possible one, which from the relation (11) is known to be (2/k)3, that is,
(1/m)® A=3 in atomic units.

5. TuE M =10 DESCRIPTION OF THE ls STATE

This description, whose parameters are listed in table 1, is as previously
mentioned an exceedingly accurate one. The Wigner function, for which we
have the expression (24), is no longer independent of z and hence we cannot
display all its features by means of a single contour map of the type shown in
figure 1. A complete picture requires the drawing of a map for each value of u
in the interval 0 <u<7/2. As is obvious from the expression (24), we obtain
the same maps for # and = —u.

It is still expedient to integrate the expression (24) over «, 8 and y and to
multiply with »% p2.  Hence we obtain the function

Fy(r, p, u) =812 p2 f1,49(r, p). (38)

p/a'o"ﬁ

0.0 .S 1.0 1.5 2.0 2.5 3.0 3.5 4.0
1/Gq

Figure 2. Contour map of the function Fiy(r, p, u) for u=0. Starting from the nodal
curves (dashed lines, contour value (0-0)) contours have been drawn at 0-01, 0-03,
0:1, 0-2 A7 (solid lines), —0-01, —0:03 271 (dotted lines).
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p/c:)1 h

"0.0 .5 1.0 1.5 2.0 2.5 3.0 3.5 2.0

Figure 3. As figure 2 except u= /4.

0.0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0 4.0
p/ag'h

3.5 3.5
3.0 3.0
2.5 2.5
2.0 2.0
1.5 1.5
1.0 1.0
.5 5
0.0 4 0.0

0.0 .5 1.0 1.5 2.0 2.5 3.0 3.5 3.0

r/(J0

R .
. '8ure 4. Contour map of the function Fis(r,p, u) for u=n/2. Starting from the

maximum (rg, po) = (1-405 @y, 0-759 a,~' #), contours have been drawn at 0-3, 0-1,
0-06, 0-03, 0-01, 0-006, 0-003 #~1,
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This function is displayed in figures 2, 3 and 4 for « equal to 0, #/4 and /2

respectively. For u=m/2 it is non-negative everywhere, but for all other values
of u it has negative as well as positive regions.

For several purposes it is sufficient to know the function obtained from (38)
by integrating over u. We shall call this function the radial phase space

function and designate it F(r, p). It satisfies the normalization condition
(35). From (24) it is found to be '

16 M .P2
&mm=—ﬂﬁzq%m«4w%m{—r)
™ i=1

i
32 M v 3
+—r2p? cic; | —2L-
™ ? i>,2=1 i o+ oy

2

L) iimaen) ()

7

x exp (— y;7?) exp ( -
where

sin x

: (40)

Jo(x)=

is a spherical Bessel function.

—
0.0

0.0
0.0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

r/a,

Figure 5. Contour map of the function Fis(r, p). The function attains its maximum
value, 0-5617 -1, at the point (rg, py) =(1-30 @y, 0-68 a,~1#). Starting from the

nodal curves (dashed lines, contour value 0-0), contours have been drawn at 0-01,
0-02, 0-05, 0-1, 0-2, 0-5 %! (solid lines), ~0-01 #~1 (dotted lines).
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Wigner function for the hydrogen atom 1011

The function F,(r, p) is displayed in figure 5. It is characterized by a
dominant region in which it is positive, and by an oscillatory behaviour outside
this region. The amplitudes of the oscillations are, however, fairly small (see
table 2), but they are definitely not due to lack of accuracy in the wavefunction
used.

Table 2. Selected values of the function Fis(r, p) for r=».

(rlao) = (p/ao™' h) Fus(r, p)/i~!

0-0 0-0

0-3 0-0326
0-6 0-2676
0-9 0-4648
1-2 0-3015
1.5 0-0473
1.8 —0-0047
21 0-0081
2-4 —0-0031
2.7 0-0014
3-0 —0-00063
33 0-00021

When the product of p and 7 is large, a regular albeit weak damped wave is
disclosed by figure 5. 'The presence of such a wave is readily understandable
from the expression (39). When both 7 and p are large, the dominant terms in
(39) will be cross terms for which one « is large and the other « is small, since
it is only for such terms that both y;; and 1/(«; + «;) become small and hence
lead to slowly decaying exponentials. Since (23) shows that |7;;| ~ 1 when one
« value is much larger than the other, we find that the relevant Bessel functions
in (39) approach jy(pr), and this leads to a damped wave as observed.

Applying a similar argument to the expression (24) shows that the contour
maps for the functions F(r, p, u) must disclose damped oscillations in cos (2p . r)
when both p and r are large. That this is in fact the case is apparent from
figures 2 and 3. In figure 4, cos (2p . r) equals 1 for all r and p (the wave-
length becomes infinite), and the phase space function is accordingly non-
negative everywhere.

The damped oscillations which we have discussed will, of course, have their
Counterparts in the theory of generalized scattering factors (cf. §2). The
appearance of the oscillations in that context has been noticed and discussed by
Avery [26], on the basis of arguments quite different from ours.

In closing this section it is worthwhile drawing attention to the complexity
of the exact phase space function, as compared to the simplicity of the approxi-
mate phase space function discussed in the previous section, and a natural
question presents itself. What must a wavefunction look like in order that the
associated Wigner function be non-negative everywhere ? Hudson {27] has
given a mathematical answer to this question for one-dimensional motion. His
analysis showed that the wavefunction must have the form

Y(x)=exp [ — §(ax?+ 2bx +c)], (41)
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where a, b are arbitrary complex numbers with Rea>0 and the complex
number ¢ is chosen so as to ensure correct normalization. When Im a is zero,
this wavefunction describes a minimum uncertainty state [28] in one dimension.
The conclusions of Hudson may probably be extended to three dimensions
in a straightforward manner. That the wavefunction (31) describes a minimum
uncertainty state in three dimensions is in accordance with this assumption.

6. THE DOMINANT SUBSPACE AND THE CLASSICAL SUBSPACE

The function Fy(r, p) of (39) and figure 5 was obtained from the function
Fi(r, p, u) of (38) by integrating over u. It is interesting to integrate over r
and p instead to obtain a function F,(u), normalized such that

§ Fi(u)sinudu=1. (42)
0
The expression for this function is found to be

10 10
Fiu)=% Y ¢+ ¥ cig;o;#™oy;— 27,2 cos? u)/(o;;+ 7% cos? u)P/z - (43)

i=1 i>j=1
with 7;; as defined by (23) and

T = e |
Il |

(44)

Figure 6 shows the functions F, () and Flg(u) sinu. Both functions have

a sharp maximum at u=m/2.

Thus, the condition u ==/2 defines a dominant subspace in which the Wigner
function finds it maximum support. As already seen (figure 4), the function is
everywhere non-negative in this subspace.

0.0 .1 .2 .3 .4 .5 .6 .7 .8 .8 1.0
u/m

Figure 6. The functions Fis(u) (upper curve) and Fis(u) sin u (lower curve) as a function
of ufm.
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mplex The dominant subspace is five-dimensional. It contains a three-dimensional
s zero, subspace of partlcular. interest, namely the sul?space obt.am.ed by putting 7 = 1a,
nsion. ! and p=1a,7! h.' It is represented by the'pomt (1, 1) in flguf'e 4, 'This is the
nsions . subspace to which the ground state motion was restricted in early quantum
dmum I mechanics, since a Bohr orbit (in ordinary space) was just a circle with radius
n i r=1 a,, in which the electron was supposed to move with the constant momentum
t p=1ltay,'. Hence we shall call the subspace in question the classical sub- :
space. .
The following important statement may now be made, on the basis of the
nction present section and figure§ 2 and 3.' The Wigner fgnction attains a lgrge,
over r positive and constant value in the classical subspace. It is also large and positive

in a large region surrounding this subspace. In particular, it is everywhere
non-negative in the dominant subspace. The regions in which the Wigner
(42) function becomes negative are well separated from the classical subspace.

7. THE ANGULAR MOMENTUM DILEMMA

43) In this section we shall comment on the angular momentum of the 1s state, ¢
as calculated by the expression on the right hand side of (10). a(r, p) is, as
mentioned in § 1, the Weyl transform of the operator 4. The Weyl corres- i
pondence is discussed in the Appendix and there it is shown that if 4 is a .
(44) component of the angular momentum vector operator, say
ly=£,py— %2, (45) iyl
3 have

then a(r, p) is the same component of the classical angular momentum vector,
Vigner that is,

tion is Iy =x,py — %215 (46) . .
As is well known, the left hand side of (10) is zero when |¢) is the 1s state and ﬂ
dis I, I, or I, Hence the right hand side must also be zero. That this is
actually the case is easily seen by remembering that f(r, p) is independent of the I

Euler angles «, B and y. This makes all directions of the vector e, in (27)
equivalent. But the direction of e, is also seen to be the direction of the
angular momentum vector and thus each component of this vector does in fact
have a zero mean value.

As regards the length of the angular momentum vector, it is shown in the »
Appendix that the classical function :

A2 =124 L2 4 [ (47)
is the Weyl transform of the operator

X=[24 L2402+ 30 48
2 3 2

Evaluating the right hand side of (10) with a(r, p)= A* will accordingly produce
the valye 3h2,

This interesting result allows us to resolve a pedagogical dilemma which
has bothered writers of elementary textbooks [29]. How does one bring the
inction fact that the angular momentum in a Bohr orbit is % into accordance with the

| fact that the angular momentum in the Schrédinger picture is zero ?




1014 J. P. Dahl and M. Springborg

The dilemma is obviously resolved by remarking that the operator that
occurs in the Schrédinger picture, viz.

P=l2+ 02+ (49)

is different from the operator that corresponds to the classical function A% of

(47). Averaging A% over the classical subspace described in the previous section
does in fact give the value #2, as in the Bohr description.

8. LOoCAL DENSITIES

An advantage of the phase space formulation of quantum mechanics is that
it leads to a natural definition of a local density in coordinate space for a given
operator and a given state. 'Thus (10) suggests that we consider the quantity

o(r)= [ dp f(r, p)a(r, p) (50)

as being the local density associated with the operator 4 and the state |).
Integration over the spatial coordinate gives the expectation value of d

Cplég> = § drofr). (51)
When a(r, p)=a(r), a function of r alone, we may use (8) to get
afr) = a(e)(r)*d(r). (52)
As an example, the potential energy operator
p=-2 (53)
7

defines the local potential energy density

zZ
exlr)= == d(r (). (54)
For the ground state of the hydrogen atom this becomes, by observing (13),
1 exp (—2r
ep(r)= —- L(___) (55)
™ 7

As an important example of an operator that is not a function of ¢ we con-
sider the kinetic energy operator

42
r-L (56)
The local kinetic energy density becomes
P’ '
w(r)= f dpf(r, p) 2. (57)
It may be evaluated when f(r, p) is known, but as shown by Ziff et al. [30] and

by Cohen [31] it may also be evaluated directly from the coordinate wavefunction
by using (6). The result is

ex(r)=3(| V2 - 1 V2[¢[2) (58)

—

————

or equivalently
It 1s seen t]
where

and

When ¢ is real

The expres
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or equivalently

ex(r) =33 Vi[> = * V2 — J V2 ). (39)
It is seen that
X ex(r) = d(exn(r) + exc(r)), (60)
; exn(r) =%V [? (61)
exc(r) = —(* V2 + V2 %), (62)
When ¢ is real, egxc(r) becomes equal to ‘
exal(r)=—*V2y. (63)

The expressions ey, exp, exc and e were all discussed by Cohen [31] (who
used the designations K 4, K, K and K, respectively). He showed that each
expression could be derived from phase space descriptions discussed earlier by
him [32].

For the ground state of the hydrogen atom we obtain the following explicit
expressions

er(n)=exclr) =7 (51 ) exp (=20), (64)

cun(r)= 5 exp (~27), (65)
1

eK(r)=2; exp (—2r). (66)

These will be discussed further in the following section.

With reference to Cohen’s work [31, 32], we want to make the comment
that, although a whole set of mathematically consistent phase space representa-
tions of quantum mechanics exists, there are compelling reasons why one
should consider the Weyl-Wigner representation used in the present work as
the canonical one. These reasons were discussed at length in a previous paper

[1).

9. A LOCAL VIRIAL THEOREM

Let
Ex=IT]9, (67)
Ep= | P4, (68)
E=|T+ V] (69)

be the expectation values of the kinetic energy, the potential energy and the
total energy, respectively, for a stationary state of the hydrogen atom. As for
any Coulomb system we then have the well-known virial theorem

Ey=—}Ep (70)

Which expresses a global balance between the kinetic and potential energy. Due
t the obvious relation

E=Ex+Ep (71)
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we may also write
Ex=—-E. (72)
Bader and his co-workers have shown that for a molecular system it is
possible to perform a spatial partitioning of the charge distribution in such a
manner that the kinetic and potential energies of the resulting fragments obey
the virial theorem (see [33]). For the ground state of the hydrogen atom they
also noted [33] that
exn(r)=—E|$[% - ' (73)
which is a local virial theorem if the right hand side is identified as the local
counterpart of the total energy.

Such an identification is, however, not quite satisfactory, since the natural
definition of this local energy density would be

en(r) = exp(r) + ep(r) (74)

in accordance with (71) and this quantity is different from the right hand side
of (73). As a consequence egy(r) and ep(r) do not satisfy a local analogue of
(70).

It is, on the other hand, easily seen that if we work with ex(r), defined through
the Weyl-Wigner correspondence, then we obtain a completely satisfactory
local form of the virial theorem

ex(r)= —fep(r), (75)
ex(r)= —«(r), (76)
«(r) =ex(r) +ep(r). (77)

It must be stressed, however, that this remarkable result only holds for the
ground state of a hydrogen-like atom.

In forthcoming publications we plan to study the local balance between the
potential and kinetic energy for other atomic and molecular systems.

10. DISCUSSION AND CONCLUSIONS

The phase space description of a quantum mechanical system is an alter-
native to the description based on wavefunctions. It is from several points of
view a more complicated description. From other points of view it is a richer
description.

The state of a system is described by a Wigner function. In the present
paper we have constructed this function for the ground state of the hydrogen
atom and analysed its properties. The analysis was facilitated by the intro-
duction of concepts like the dynamical plane and the dynamical angle, the classical
subspace and the dominant subspace. The orientation of the dynamical
plane is closely related to the angular momentum vector ; the classical subspace
is that part of phase space to which the ground state motion was confined in
early quantum mechanics. .

The Wigner function is found to be independent of the orientation of the
dyanamical plane. It attains a large, positive and constant value in the classical
subspace and it remains large and positive in an extended region containing that
subspace. Outside this region the Wigner function shows a rich structure
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‘j which includes oscillations of a de Broglie wave-like character for large values
(72) of rand p. We have illustrated the general variation over phase space by means
L of a series of contour maps and a graph which shows that the Wigner function
a1t 1s finds its maximum support in the subspace where r. p=0, the so-called domi-
such a nant subspace.
s obey : A dynamical variable is represented by an operator in a description based on
n they ! wavefunctions. In the phase space description it is represented by an ordinary
function of r and p. The connection between the two representations is given
(73) by the so-called Weyl correspondence which we have described in the Appendix.
e local In §7 we have discussed the Weyl transformation of the angular momentum
and thus resolved a pedagogical dilemma which previously obscured the com-
jatural parison between early quantum mechanics and the Schrédinger description.
In §§8 and 9 we have shown how an integration over the momentum
coordinates leads to a local configuration space description of all dynamical
(74) quantities. We have then studied the local kinetic and potential energies and
1d side shown that the virial theorem is locally satisfied for the ground state of the
igue of hydrogen atom.
In forthcoming papers we shall extend the present study by including Fxd
arough excited states, and atoms and molecules with more than one electron. o
factory S
We are very grateful to Dr. Sten Rettrup for his kind assistance at an early 7
75 stage of this work. We also want to thank Dr. Helge Johansen for letting us s
(75) use his density contour programs and Dr. Kurt Nielsen for interesting dis- o
(76) cussions. v
(77) APPENDIX .r
for the The Weyl correspondence .
To every operator 4 in spin-free Hilbert space there corresponds a phase s
en the space function a(r, p), such that (10) is valid. The relation between 4 and ’
a(r, p) is given by the so-called Weyl correspondence [1], which we prefer to i
3 write in the form [11] !
2)\? N
| alter- d:(Z) ." I dr dp a(r, p)H(l’, p)» (A 1)
nts of i where TI(r, p) is the inversion operator (1). 4 and a(r, p) are said to be mutual
richer . Weyl transforms.
Whenever a(r, p) is a function of r or p alone, then 4 is the same function
present of the vector operator # or f. In the general case one obtains the operator d
drogen from the function a(r, p) by the replacement of r with # and p with p, followed
intro- by a proper symmetrization of products of non-commuting operators. This
lass?cal Symmetrization is such that, if x; and p; are corresponding components of r and
1amical P, then the operator associated with the function x,” p,™ is
itbspace : |
. . 4 n n Y
ined in 2 é:ﬁ r;O <r) £ pm &
of the : L7 fm
lassical ; - AS g fm—s A
ng +hat ‘ om =0 <s>pz i Pi ( 2)
ructure :

These expressions were first derived by McCoy [34].
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As an important example let us consider the classical angular momentum
vector

L=rx p= (%03~ %3P0, X3P1 — %13, X1 P2~ X2P1)- (A3)
Direct substitution does not introduce products of non-commuting operators.
The Weyl transform of [ is accordingly
1= x p=(£,p5— £3po, #3P1 — &1 P35, £1P2— £o1) (A4)
which is just the ordinary quantum mechanical angular momentum vector.
For the square of an angular momentum component, ; say, we obtain

L2 = 2,2 po® + %92 pr? — 25, p1%y P (A5)

Symmetrization according to (A 2) gives the corresponding operator which we
denote A4?

A= 812 Po? + &% Py® — $(E1 1 + Doy )(#abo + Pofa). (A 6)
Squaring the third component of 1 gives, on the other hand, the operator
[2 =22 po2 + £, 2 — £, 51 Pofts — PrfaRafo- (A7)
Using the commutation relation
(#1> i) =1h (A8)
twice shows that
A2=12+ 32 (A9)
and hence that )
A2=J24 32, (A 10)
where o ) )
A2= A2+ A2+ A2 (A 1Y)
and o
lP=l2+ 02412 (A 12)

Thus, there is a difference of 342 between the Weyl transform of /2 and the
ordinary quantum mechanical operator 2. This difference was apparently
first noticed by Shewell [35] in connection with a general discussion of corres-
pondence and symmetrization rules.
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